From 2683a51c0b63b80cfef40ea1531b9139d2e48dfd Mon Sep 17 00:00:00 2001 From: azertop Date: Wed, 14 Feb 2024 12:10:27 +0100 Subject: [PATCH] first commit --- TP1.ipynb | 108 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 108 insertions(+) create mode 100644 TP1.ipynb diff --git a/TP1.ipynb b/TP1.ipynb new file mode 100644 index 0000000..ea6e397 --- /dev/null +++ b/TP1.ipynb @@ -0,0 +1,108 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "from sklearn.datasets import load_iris\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \\\n", + "0 5.1 3.5 1.4 0.2 \n", + "1 4.9 3.0 1.4 0.2 \n", + "2 4.7 3.2 1.3 0.2 \n", + "3 4.6 3.1 1.5 0.2 \n", + "4 5.0 3.6 1.4 0.2 \n", + "\n", + " species \n", + "0 setosa \n", + "1 setosa \n", + "2 setosa \n", + "3 setosa \n", + "4 setosa \n" + ] + } + ], + "source": [ + "iris = load_iris()\n", + "df = pd.DataFrame(iris.data,columns=iris.feature_names)\n", + "df['species'] = iris.target\n", + "df[\"species\"] = df[\"species\"].map({0:iris.target_names[0],1:iris.target_names[1],2:iris.target_names[2]})\n", + "print(df.head())" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " sepal length (cm) sepal width (cm) petal length (cm) \\\n", + "count 150.000000 150.000000 150.000000 \n", + "mean 5.843333 3.057333 3.758000 \n", + "std 0.828066 0.435866 1.765298 \n", + "min 4.300000 2.000000 1.000000 \n", + "25% 5.100000 2.800000 1.600000 \n", + "50% 5.800000 3.000000 4.350000 \n", + "75% 6.400000 3.300000 5.100000 \n", + "max 7.900000 4.400000 6.900000 \n", + "\n", + " petal width (cm) \n", + "count 150.000000 \n", + "mean 1.199333 \n", + "std 0.762238 \n", + "min 0.100000 \n", + "25% 0.300000 \n", + "50% 1.300000 \n", + "75% 1.800000 \n", + "max 2.500000 \n" + ] + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "import seaborn as sns \n", + "\n", + "#Décrire le jeu de données\n", + "print(df.describe())" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.0" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +}