This commit is contained in:
azertop 2024-02-14 12:59:19 +01:00
parent 91b77d7cba
commit 85a51a35e0
1 changed files with 71 additions and 0 deletions

View File

@ -110,6 +110,77 @@
"sns.heatmap(df.corr(numeric_only=True),annot=True,fmt=\".2f\")\n", "sns.heatmap(df.corr(numeric_only=True),annot=True,fmt=\".2f\")\n",
"plt.show()" "plt.show()"
] ]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[10 0 0]\n",
" [ 0 9 0]\n",
" [ 0 0 11]]\n",
" precision recall f1-score support\n",
"\n",
" setosa 1.00 1.00 1.00 10\n",
" versicolor 1.00 1.00 1.00 9\n",
" virginica 1.00 1.00 1.00 11\n",
"\n",
" accuracy 1.00 30\n",
" macro avg 1.00 1.00 1.00 30\n",
"weighted avg 1.00 1.00 1.00 30\n",
"\n"
]
}
],
"source": [
"from sklearn.model_selection import train_test_split\n",
"\n",
"X = df.drop('species',axis=1)\n",
"y = df[\"species\"]\n",
"\n",
"X_train,X_test,y_train,y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n",
"\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.metrics import confusion_matrix,classification_report\n",
"\n",
"model = LogisticRegression(max_iter=200)\n",
"model.fit(X_train,y_train)\n",
"\n",
"y_pred = model.predict(X_test)\n",
"\n",
"print(confusion_matrix(y_test,y_pred))\n",
"print(classification_report(y_test,y_pred))"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Précision moyenn : 0.9733333333333334\n"
]
}
],
"source": [
"from sklearn.model_selection import cross_val_score\n",
"scores = cross_val_score(model,X,y,cv=5)\n",
"print(\"Précision moyenn :\",scores.mean())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
} }
], ],
"metadata": { "metadata": {