Tennis-AI/app.py

134 lines
4.6 KiB
Python

from fastapi import FastAPI
from pydantic import BaseModel
import asyncio
import pickle
from typing import List, Dict
import numpy as np
app = FastAPI()
# Charger le modèle
with open('pipeline_xgb.pkl', 'rb') as file:
model = pickle.load(file)
# Définir les modèles de requête et de réponse
class TennisMatch(BaseModel):
match_id: int
player_id1: int
player_id2: int
p1_niveau_rank: float
p1_niveau_win_total: float
p1_niveau_win_surface_total: float
p1_h2h_win_total: float
p1_h2h_win_1an: float
p1_h2h_win_surface_total: float
p1_h2h_win_sets: float
p1_progression_win_1an: float
p1_progression_win_surface_1an: float
p1_progression_win_last_50matchs: float
p1_progression_win_last_10matchs: float
p1_forme_matchs_30j: float
p1_forme_matchs_length_tournament: float
p1_tendance_loose_favori_30j: float
p1_tendance_win_outsider_30j: float
p1_confiance_first_service_last_match: float
p1_confiance_points_first_service_last_match: float
p1_confiance_break_saved_last_match: float
p2_niveau_rank: float
p2_niveau_win_total: float
p2_niveau_win_surface_total: float
p2_h2h_win_total: float
p2_h2h_win_1an: float
p2_h2h_win_surface_total: float
p2_h2h_win_sets: float
p2_progression_win_1an: float
p2_progression_win_surface_1an: float
p2_progression_win_last_50matchs: float
p2_progression_win_last_10matchs: float
p2_forme_matchs_30j: float
p2_forme_matchs_length_tournament: float
p2_tendance_loose_favori_30j: float
p2_tendance_win_outsider_30j: float
p2_confiance_first_service_last_match: float
p2_confiance_points_first_service_last_match: float
p2_confiance_break_saved_last_match: float
idc_p1_motivation_enjeu: float
idc_p1_motivation_revanche: float
idc_p1_motivation_surface: float
idc_p1_tactique_profil: float
idc_p1_tactique_service1: float
idc_p1_tactique_service2: float
idc_p1_tactique_retourservice1: float
idc_p1_tactique_retourservice2: float
idc_p1_tactique_breaksauve: float
idc_p1_tactique_breakgagne: float
idc_p1_tactique_tiebreak: float
idc_p1_historique_match: float
idc_p1_historique_book: float
idc_p1_historique_estimated: float
idc_p2_motivation_enjeu: float
idc_p2_motivation_revanche: float
idc_p2_motivation_surface: float
idc_p2_tactique_profil: float
idc_p2_tactique_service1: float
idc_p2_tactique_service2: float
idc_p2_tactique_retourservice1: float
idc_p2_tactique_retourservice2: float
idc_p2_tactique_breaksauve: float
idc_p2_tactique_breakgagne: float
idc_p2_tactique_tiebreak: float
idc_p2_historique_match: float
idc_p2_historique_book: float
idc_p2_historique_estimated: float
tournament_round: float
tournament_type: float
tournament_surface: float
class MatchPrediction(BaseModel):
match_id: int
win_probability_j1: float
win_probability_j2: float
class BatchPredictionRequest(BaseModel):
matches: List[TennisMatch]
class BatchPredictionResponse(BaseModel):
predictions: List[MatchPrediction]
# Définir la fonction de prédiction
async def predict_match(features: Dict[str, float]):
match_id = int(features.pop('match_id')) # Extraire l'identifiant du match
prediction = await asyncio.to_thread(model.predict_proba, [features])
return MatchPrediction(
match_id=match_id,
win_probability_j1=prediction[0][0],
win_probability_j2=prediction[0][1]
)
# Définir le point de terminaison pour la prédiction en lot
@app.post("/predict_batch", response_model=BatchPredictionResponse)
async def predict_batch(request: BatchPredictionRequest):
prediction_tasks = [
predict_match(match.dict())
for match in request.matches
]
predictions = await asyncio.gather(*prediction_tasks)
return BatchPredictionResponse(predictions=predictions)
# Définir le point de terminaison pour une seule prédiction
@app.post("/predict", response_model=MatchPrediction)
async def predict_match(features: Dict[str, float]):
match_id = int(features['match_id']) # Extraire l'identifiant du match
# Assurez-vous que les caractéristiques sont dans le bon format pour le modèle
feature_list = [features[key] for key in sorted(features.keys())]
feature_array = np.array(feature_list).reshape(1, -1) # Transformer en tableau 2D avec une seule ligne
prediction = await asyncio.to_thread(model.predict_proba, feature_array)
return MatchPrediction(
match_id=match_id,
win_probability_j1=prediction[0][0],
win_probability_j2=prediction[0][1]
)